q^2-9q-23=-5-2q

Simple and best practice solution for q^2-9q-23=-5-2q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2-9q-23=-5-2q equation:



q^2-9q-23=-5-2q
We move all terms to the left:
q^2-9q-23-(-5-2q)=0
We add all the numbers together, and all the variables
q^2-9q-(-2q-5)-23=0
We get rid of parentheses
q^2-9q+2q+5-23=0
We add all the numbers together, and all the variables
q^2-7q-18=0
a = 1; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*1}=\frac{-4}{2} =-2 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*1}=\frac{18}{2} =9 $

See similar equations:

| -3+1=15r-8 | | 2(3x-5)=5(x+1) | | 8(x+1)=2(x+16 | | 15(2/5x-7/15)=11 | | 2(3x-5)=5(x+1 | | 9x+45=9x+45 | | x2-7x+8=0 | | -2/3w+4/5w=1/3w-3/5 | | x^2-17x+17.25=0 | | 3x+(5/16)=(3/4)-(1/8)x-(1/3) | | 14(2q-3)=8q-12 | | 1)/3(2x-5)=5 | | 3n+(-5)-2=11 | | (1)/(3)(2x-5)=5 | | 3{x+6}-3=45-2x | | 0.05t+0.07(t+400)=124 | | 0.05t+0.11(t+2,000)=1,340 | | -17=1/2x+3 | | 0.09y+0.10(y+2,000)=9600.09y+0.10(y+2,000)=960 | | 0.09y+0.10(y+2,000)=960 | | 0.07t+0.12(t+2000)=1760 | | 6x-(2x-5)=12 | | 8=d1X10 | | 2/3x-5=x/2-3 | | 26=6t | | 4b+5=1+5b4 | | 0.07t+0.12(t+2,000)=1,760 | | 5p+14=8p+5 | | .40p+4.50=112 | | Y=x2-4x+3 | | 7y+4-11=0 | | 7x-2x+3-x+5=24 |

Equations solver categories